Quantum quenches in the thermodynamic limit.

نویسنده

  • M Rigol
چکیده

We introduce a linked-cluster based computational approach that allows one to study quantum quenches in lattice systems in the thermodynamic limit. This approach is used to study quenches in one-dimensional lattices. We provide evidence that, in the thermodynamic limit, thermalization occurs in the nonintegrable regime but fails at integrability. A phase transitionlike behavior separates the two regimes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum quenches and work distributions in ultralow-density systems.

We present results on quantum quenches in lattice systems with a fixed number of particles in a much larger number of sites. Both local and global quenches in this limit generically have power-law work distributions ("edge singularities"). We show that this regime allows for large edge singularity exponents beyond that allowed by the constraints of the usual thermodynamic limit. This large-expo...

متن کامل

Numerical linked cluster expansions for quantum quenches in one-dimensional lattices.

We discuss the application of numerical linked cluster expansions (NLCEs) to study one dimensional lattice systems in thermal equilibrium and after quantum quenches from thermal equilibrium states. For the former, we calculate observables in the grand canonical ensemble, and for the latter we calculate observables in the diagonal ensemble. When converged, NLCEs provide results in the thermodyna...

متن کامل

Time evolution of local observables after quenching to an integrable model.

We consider quantum quenches in integrable models. We argue that the behavior of local observables at late times after the quench is given by their expectation values with respect to a single representative Hamiltonian eigenstate. This can be viewed as a generalization of the eigenstate thermalization hypothesis to quantum integrable models. We present a method for constructing this representat...

متن کامل

Quenching the anisotropic heisenberg chain: exact solution and generalized Gibbs ensemble predictions.

We study quenches in integrable spin-1/2 chains in which we evolve the ground state of the antiferromagnetic Ising model with the anisotropic Heisenberg Hamiltonian. For this nontrivially interacting situation, an application of the first-principles-based quench-action method allows us to give an exact description of the postquench steady state in the thermodynamic limit. We show that a general...

متن کامل

Light cone renormalization and quantum quenches in one-dimensional Hubbard models

The Lieb–Robinson bound implies that the unitary time evolution of an operator can be restricted to an effective light cone for any Hamiltonian with short-range interactions. Here we present a very efficient renormalization group algorithm based on this light cone structure to study the time evolution of prepared initial states in the thermodynamic limit in one-dimensional quantum systems. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 112 17  شماره 

صفحات  -

تاریخ انتشار 2014